## 41. Synthesis of (-)-Conduritol C (1L-Cyclohex-5-ene-1,2,3/4-tetrol)<sup>1</sup>)

by Claude Le Drian, Eric Vieira<sup>2</sup>), and Pierre Vogel\*

Institut de chimie organique de l'Université, 2, rue de la Barre, CH-1005 Lausanne

(21. XII. 88)

(1R,2R,4R)-2-endo-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl acetate ((-)-7) has been transformed into the all-cis-configurated 4L-4,5,6/0-trihydroxycyclohex-2-en-1-one derivatives (-)-12 and (-)-19. (-)-Conduritol C ((-)-3) was derived in a stereospecific manner from (-)-12.

**Introduction.** – Among the six possible structures of the conduritols (cyclohexenetetrols), conduritols A (1) and D (4) are *meso* and conduritols B (2), C (3), E (5), and F (6) exist as pairs of enantiomers [3]. From the bark of *Marsdenia Condurango*, 1 was isolated already in 1908 by *Kubler* [4]. In 1962, *Plouvier* [5] isolated 'leucanthemitol' (= (+)-conduritol F) from *Chrysanthenum leucanthemitum*. This compound was then discovered in many other plants [6] [7]. The syntheses of *meso* 1 and 4 and of racemic 2, 3, 5, and 6 have been reported [3] [8–13]<sup>3</sup>). In 1958, *Angyal et al.* [14] presented a synthesis of (+)-conduritol E (= 1D-cyclohex-5-ene-1,2/3,4-tetrol; (+)-5). In 1981, *Paulsen et al.* [15] reported the syntheses of (-)-conduritol B (= 1L-cyclohex-5-ene-1,3/2,4-tetrol; (-)-2) and (-)-conduritol F (= 1L-cyclohex-5-ene-1,2,4/3-tetrol; (-)-6)<sup>4</sup>).



The biosynthesis of natural conduritols has been studied [6]. Interestingly, their derivatives (*e.g.* epoxycyclohexanetetrols [8] [18], epoxycyclohexenediols [19] [20], amino-conduritols [21], and bromoconduritols [19] [22]) have biological activities (*e.g.* glycosidase inhibitors). This should stimulate the development of new syntheses of optically pure conduritols. Whereas racemic conduritol C (( $\pm$ )-3) has been derived from *epi*-inositol [23] and from cyclohexa-3,5-diene-1,2-diol [24], we report here the first total synthesis of optically pure (–)-conduritol C ((-)-3).

<sup>&</sup>lt;sup>1</sup>) Enantiomerically pure 7-oxabicyclo[2.2.1]hept-5-en-2-yl derivatives ('naked sugars' [1]) as synthetic intermediates, Part VI; Part V: [2].

<sup>&</sup>lt;sup>2</sup>) Present address: Ciba-Geigy SA, Marly, CH-1700 Fribourg.

<sup>&</sup>lt;sup>3</sup>) For recent syntheses, see conduritol A [8], (±)-conduritol B [9] [10], (±)-tetra-O-benzylconduritol B [11], (±)-1,2-di-O-benzoyl-4-O-methylconduritol F [12], and (±)-anhydroconduritols [13].

<sup>&</sup>lt;sup>4</sup>) For the determination of the absolute configuration of the cyclohexanetetrols, see [16] [17].

**Results and Discussion.** – Our starting material is the 'naked sugar' (–)-7 ((–)-(1R,2R,4R)-2-endo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate, ee > 99 %) [25]. Stereospecific *cis*-bis-hydroxylation of (–)-7 with H<sub>2</sub>O<sub>2</sub> in *t*-BuOH and a catalytical amount of OsO<sub>4</sub> gave diol (–)-8 which was silylated with (*t*-Bu)Me<sub>2</sub>SiCl and imidazole in DMF [26] to (–)-9 (74% based on (–)-7). Saponification of (–)-9 in the presence of formaline yielded ketone (+)-10 (80%)



<sup>&</sup>lt;sup>a</sup>) Only one enantiomer is represented.

Strong bases such as NaOMe or LiN(SiMe<sub>3</sub>)<sub>2</sub> which are used to isomerize 7-oxabicyclo[2.2.1]heptane-2-carboxylates or 7-oxabicyclo[2.2.1]hept-2-yl alkyl ketones into the corresponding 1-substituted 5-hydroxycyclohex-1-enes [27] induced quick decomposition of (+)-10. With Et<sub>3</sub>N, the ring opening of the O-bridge occurred, only if trimethylsilyl triflate (TfOSiMe<sub>3</sub>) was added to the reaction mixture and led to the formation of 11. The latter was readily hydrolyzed with MeOH/H<sub>2</sub>O/HF to afford crystalline (-)-12 (87% based on (+)-10). Treatment of the acetonide (±)-13 [28] with Et<sub>3</sub>N/TfOSiMe<sub>3</sub> in PhH (0°) for 105 min gave a 1:1.4:1 mixture (±)-13/(±)-14/(±)-15. After prolonged reaction time or using a large excess of Et<sub>3</sub>N/TfOSiMe<sub>3</sub>, the unstable cyclohexadiene derivative (±)-15 was the major product. Acidic hydrolysis (MeOH/H<sub>2</sub>O/HCl, 20°) of (±)-14 gave hydroxyketone (±)-16 (71%).

Reduction of  $(\pm)$ -16 with NaBH<sub>4</sub>/CeCl<sub>3</sub> in MeOH [29] afforded the partially protected conduritol D derivative  $(\pm)$ -17 (73%) which, on acidic hydrolysis, gave conduritol D (4) quantitatively. Reduction of  $(\pm)$ -11 with diisobutylaluminium hydride (DIBAH) in THF afforded  $(\pm)$ -18 in excellent yield. All our attempts to displace the unprotected alcohol in  $(\pm)$ -18 using the *Mitsunobu* method [30] failed.

The acetate (-)-19 (95%) was, thus, prepared by treating (-)-12 with  $Ac_2O$ /pyridine and 4-(dimethylamino)pyridine. Reduction of (-)-19 with NaBH<sub>4</sub> and CeCl<sub>3</sub> in MeOH

afforded (-)-20 (92%) which was converted readily into the benzoate (-)-21 (87%) on treatment with diethyl azodicarboxylate, Ph<sub>3</sub>P, and benzoic acid in THF. (-)-Conduritol C ((-)-3) was obtained in 71% yield, after removal of the protective groups in (-)-21. Acetylation (Ac<sub>2</sub>O/pyridine) of (-)-3 gave tetraacetate (-)-22 and hydrogenation of (-)-3 (H<sub>2</sub>, Pd/C, MeOH) the (-)-1L-cyclohexane-1,2,3/4-tetrol ((-)-23) whose characteristics (see *Exper. Part*) were similar to those reported by *Posternak et al.* [31] [32] for this compound. Thus, our total synthesis confirms the absolute configuration (1L) attributed in 1955 [16] to (-)-23.



<sup>a</sup>) Only one enantiomer is represented.

The *Mitsunobu* displacement reaction has been shown to be a  $S_N 2$  process which does not involve allylic rearrangement with allylic alcohols [33]. We have demonstrated that this applies also to reaction (-)-20 $\rightarrow$ (-)-21 in the following manner. Reduction of (±)-19 with NaBD<sub>4</sub>/CeCl<sub>3</sub> in MeOH gave the deuterated conduritol-D derivative (±)-24 which, on treatment with Ph<sub>3</sub>P, diethyl azodicarboxylate, and benzoic acid gave exclusively (±)-25, with no deuterium incorporation in the olefinic moiety.

Another, lower-yield and less selective synthesis of conduritol C was realized in the following way. Deprotection (Bu<sub>4</sub>NF/THF) of ( $\pm$ )-12 followed by acetylation (Ac<sub>2</sub>O/py-ridine) gave the triacetate ( $\pm$ )-26. Its reduction<sup>5</sup>) with NaBH<sub>4</sub>/CeCl<sub>3</sub> in MeOH/H<sub>2</sub>O at 0° led, after acetylation, to a mixture of 28 and ( $\pm$ )-22, isolated in 51 and 35% yield, respectively<sup>6</sup>).

**Conclusion.** – The 'naked sugar' (–)-7 has been converted into (–)-conduritol C ((–)-3) in 28% overall yield. Chiral derivatives of conduritol D (4) were also obtained readily. A very smooth technique for the isomerization of 7-oxabicyclo[2.2.1]heptan-2-ones into the corresponding 6-hydroxycyclohex-2-en-1-ones<sup>7</sup>) has been developed.

We thank the Swiss National Science Foundation, the Fonds Herbette, Lausanne, F. Hoffmann-La Roche & Co. AG, Basel, and Du Pont de Nemours & Co., Wilmington, for financial support.

<sup>&</sup>lt;sup>5</sup>) Reduction of (±)-12, (±)-14, (±)-16, and (±)-19 by several reducing agents (NaBH<sub>4</sub>, NaBH<sub>4</sub>/CeCl<sub>3</sub>, LiAlH<sub>4</sub>, DIBAH) gave only all-*cis*-conduritol-D derivatives, with no significant amount of conduritol-C derivatives. Reduction of the trihydroxyketone (±)-27 by NaBH<sub>4</sub> yielded a *ca*. 1:1 mixture of conduritols C and D.

<sup>&</sup>lt;sup>6</sup>) Protected 4L-4,5,6/0-trihydroxycyclohex-2-en-1-ones such as 11 are intermediates [34] in the synthesis of COTC ((4R,5R,6R)-2-[(crotonyloxy)methyl]-4,5,6-trihydroxycyclohex-2-en-1-one) [35], a glyoxalase inhibitor with potential cytotoxic and anticancer activity [36].

<sup>&</sup>lt;sup>7</sup>) Enone (-)-12 has been transformed [37] into the aglycone of a 'cyanoglucoside' ([(1Z,4R,5R,6S)-6-(β-D-glucosyloxy)-4,5-dihydroxycyclohex-2-ene-1-ylidene]acetonitrile) isolated from *Ilex Warburgii* [38].

## **Experimental Part**

General. See [28].

(-)-(1R,2R,4R,5S,6R)-2-endo-Cyano-5-exo,6-exo-dihydroxy-7-oxabicyclo[2.2.1]hept-2-exo-yl Acetate ((-)-8). To a soln. of (-)-7 [25] (5.1 g, 28.5 mmol;  $[\alpha]_{889}^{25} = +57.7$ , ee > 99%) in 50 ml of t-BuOH, OsO<sub>4</sub> (4% soln. in CCl<sub>4</sub>; 1 ml, 0.2 mmol) and H<sub>2</sub>O<sub>2</sub> (30% soln. in H<sub>2</sub>O; 15 ml, 0.15 mol) were successively added. This black mixture was left at 25° until it was decolorized (3 weeks). Sufficient NaHSO<sub>3</sub> (40% soln. in H<sub>2</sub>O; ca. 30 ml, ca. 0.15 mol) was then added under vigourous stirring at  $0^{\circ}$  to reduce peroxides. The mixture was then poured into sat. aq. NaCl soln. (100 ml) and extracted with AcOEt (200 ml, 7 times). The combined org. phases were washed with sat. aq. NaCl soln. (20 ml), dried (MgSO<sub>4</sub>), and evaporated. The residue was dissolved in hot CHCl<sub>3</sub> (100 ml), dried (MgSO<sub>4</sub>), and left overnight at  $-30^{\circ}$ . Pure (-)-8 crystallized out (3.55 g, 58.4%; m.p.  $117-119^{\circ}$ ); the residue (2.3 g) left by evaporation of the mother-liquors was dissolved in DMF (12 ml) and treated successively by imidazole (2 g, 29 mmol) and (t-Bu)Me<sub>2</sub>SiCl (4.3 g, 28 mmol). After 8 h at 25°, imidazole (1 g, 14 mmol) and (t-Bu)Me<sub>2</sub>SiCl (2.1 g, 14 mmol) were added and the mixture left for 15 h. Extraction and chromatography (vide infra) yielded 2.7 g (21.5% from (-)-7) of (-)-9 as a clear oil. Data of (-)-8: Recrystallization from CHCl3 gave an anal. sample. M.p.  $119-121^{\circ}. \ [\alpha]_{559}^{25} = -42, \ [\alpha]_{578}^{25} = -44, \ [\alpha]_{546}^{25} = -50, \ [\alpha]_{436}^{25} = -86, \ [\alpha]_{356}^{25} = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr): 3430, \ (KBr) = -136 \ (c = 1, \ CHCl_3). \ IR \ (KBr): 3430, \ (KBr): 34300, \ (KBr): 34300, \ (KBr): 34300, \ (KBr): 34300, \ (KBr): 3430$ 3350, 2970, 2240, 1745, 1445, 1370, 1225, 1195, 1110, 1045, 1010, 920, 875. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 4.68 (br. d,  ${}^{4}J = 1.5$ , H-C(1)); 4.54 (m, H-C(4)); 4.50, 4.03 (2d,  ${}^{3}J = 6$ , H-C(5), H-C(6)); 2.26 (m, 2 H-C(3)); 2.15 (s, 2.15); 2.15 (s, CH<sub>3</sub>COO). <sup>13</sup>C-NMR (62.9 MHz, CDCl<sub>3</sub>): 169.1 (s, CO); 116.2 (s, CN); 86.9 (dm, <sup>1</sup>J(C,H) = 172); 81.7 (dm,  ${}^{1}J(C,H) = 169$ ; 73.0 (dm,  ${}^{1}J(C,H) = 165$ ); 72.2 (s, C(2)); 69.9 (d,  ${}^{1}J(C,H) = 153$ ); 41.4 (t,  ${}^{1}J(C,H) = 138$ , C(3)); 20.8 (q,  ${}^{1}J(C,H) = 129$ ,  $CH_{3}CO$ ). MS (70 eV): 142 (6,  $M^{+-}$  - 31), 171 (10), 154 (11), 128 (17), 125 (19), 124 (95), 60 (100). Anal. calc. for C<sub>9</sub>H<sub>11</sub>NO<sub>5</sub> (213.188): C 50.71, H 5.20; found: C 50.80, H 5.27.

(-)-(1R,2R,4R,5R,6S)-5-exo,6-exo-Bis{((tert-butyl)dimethylsilyl]oxy}-2-endo-cyano-7-oxabicyclo-[2.2.1]hept-2-exo-yl Acetate ((-)-9). To a soln. of (-)-8 (3.3 g, 15.5 mmol) in dry DMF (18 ml), imidazole (3 g, 44 mmol) and (t-Bu)Me<sub>2</sub>SiCl (6.5 g, 43 mmol) were successively added. After stirring at 25° for 8 h, imidazole (1.5 g, 22 mmol) and (t-Bu)Me<sub>2</sub>SiCl (3.2 g, 21 mmol) were added. After 15 h at 25°, the mixture was poured in Et<sub>2</sub>O (250 ml) and washed successively with sat. aq. NaCl soln. (30 ml), 2M aq. HCl (50 ml), 10% aq. K<sub>2</sub>CO<sub>3</sub> soln. (50 ml), and sat. aq. NaCl soln. (20 ml). The aq. layers were extracted successively with Et<sub>2</sub>O (120 ml). The combined org. phases were dried (MgSO<sub>4</sub>), evaporated, vacuum-dried (40°/0.03 Torr), and purified by column chromatography on silica gel (Lobar, size C,  $Et_2O$ /petroleum ether 1:6) yielding 6.15 g (90%) of a clear oil. All recrystallization attempts were unsuccessful.  $[\alpha]_{589}^{25} = -20.6$ ,  $[\alpha]_{578}^{25} = -21.4$ ,  $[\alpha]_{546}^{25} = -24.4$ ,  $[\alpha]_{436}^{45} = -41.5$ ,  $[\alpha]_{365}^{25} = -65$  (c = 11, CHCl<sub>3</sub>). IR (film): 2950, 2920, 2880, 2850, 2240, 1750, 1465, 1365, 1245, 1210, 1145, 1050, 1020, 930, 900, 880, 830, 770, 665. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 4.60 (br. s, H–C(1)); 4.45 (m, H–C(4)); 4.44, 3.95 (2d,  ${}^{3}J = 6$ , H–C(5), H–C(6)); 2.20 (m, 2 H–C(3)); 2.14 (s, CH<sub>3</sub>CO); 0.96, 0.93 (2s, 2 (t-Bu)Si); 0.20, 0.17, 0.13, 0.12 (4s, 2 Me<sub>2</sub>Si). <sup>13</sup>C-NMR (62.9 MHz,  $CDCl_3$ ): 169.2 (s, COO); 116.6 (s, CN); 87.4 (dm,  ${}^{1}J(C,H) = 172$ ), 82.2 (dm,  ${}^{1}J(C,H) = 162$ )(C(1), C(4)); 75.6  $(dm, {}^{1}J(C,H) = 142), 72.3 (d, {}^{1}J(C,H) = 145)(C(5), C(6)); 72.4 (s, C(2)); 41.4 (t, {}^{1}J(C,H) = 139, C(3)); 26.0 (qm, C(3)); 26.$  ${}^{1}J(C,H) = 126, 2 (CH_3)_3CSi); 20.9 (q, {}^{1}J(C,H) = 130, CH_3CO); 18.6, 18.4 (2s, 2 (CH_3)_3CSi); -4.3, -4.5, -4.8 (3q, 2), -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5,$  ${}^{1}J(C,H) = 119, 2 (CH_{3})_{2}Si)$ . MS (70 eV): 384 (9,  $M^{+} - 57$ ), 324 (9), 210 (9), 147 (17), 142 (13), 133 (5), 117 (23), 75 (27), 127 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (27), 128 (38), 74 (9), 73 (100). Anal. calc. for C<sub>21</sub>H<sub>39</sub>NO<sub>5</sub>Si<sub>2</sub> (441.715): C 57.10, H 8.90; found: C 57.22, H 8.82.

(+)-(1R,4R,5R,6S)-5-exo,6-exo-Bis{[(tert-butyl)dimethylsilyl]oxy}-7-oxabicyclo[2.2.1]heptan-2-one ((+)-10). Formaline (38 % aq. CH<sub>2</sub>O soln.; 4.5 ml, 62 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.33 g, 2.4 mmol) were added successively to a soln. of (-)-9 (5 g, 11.3 mmol) in MeOH (60 ml). After stirring at 25° for 45 min, the mixture was poured into Et<sub>2</sub>O (350 ml) and washed successively with 1N HCl (20 ml), sat. aq. NaHCO<sub>3</sub> soln. (25 ml), and sat. aq. NaCl soln. (25 ml). The aq. layers were extracted with Et<sub>2</sub>O (100 ml), the combined org. extracts dried (MgSO<sub>4</sub>) and evaporated, and the residue was purified by column chromatography on silica gel (Lobar, size C, Et<sub>2</sub>O/petroleum ether 1:4) yielding 3.36 g (80%) of a light yellow oil (all recrystallization attempts were unsuccessful, but ( $\pm$ )-10 was obtained as white crystals, m.p.  $41-42^{\circ}$ ).  $[\alpha]_{589}^{25} = +35$ ,  $[\alpha]_{578}^{25} = +37$ ,  $[\alpha]_{546}^{25} = +44.5$ ,  $[\alpha]_{436}^{25} = +99$ ,  $[\alpha]_{365}^{25} = +272$ (c = 3, CHCl<sub>3</sub>). UV (isooctane): 330 (37), 317 (60), 306 (56), 294 (sh, 40). IR (film): 2950, 2930, 2890, 2860, 1770, 1460, 1255, 1195, 1155, 1130, 1110, 990, 965, 905, 835, 780. <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>): 4.76 (dd,  ${}^{3}J = 6.5$ ,  ${}^{4}J = 1.8$ , H-C(4)); 4.17 (t,  ${}^{4}J = 1.8$ , H-C(1)); 4.08 (s, H-C(5), H-C(6)); 2.33 (ddd,  ${}^{2}J = 18$ ,  ${}^{3}J = 6.5$ , 1.8,  $H_{exo} - C(3)); 1.89 (d, {}^{2}J = 18, H_{endo} - C(3)); 0.91, 0.90 (2s, 2 t - BuSi); 0.10, 0.08 (2s, 2 Me_{2}Si). {}^{13}C-NMR (62.9 MHz, CDCl_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, C(2)); 87.3 (dm, {}^{1}J(C,H) = 168), 83.4 (dm, {}^{1}J(C,H) = 164)(C(1), C(4)); 76.1 (dm, {}^{1}J(C,H) = 146), CCCL_{3}); 210.2 (s, CCL_{3}); 2$ 72.4 (dm,  ${}^{1}J(C,H) = 148$ )(C(5), C(6)); 40.3 (t,  ${}^{1}J(C,H) = 135$ , C(3)); 26.0 (qm,  ${}^{1}J(C,H) = 125$ , 2 ( $CH_{3}$ )<sub>3</sub>CSi); 18.5  $(s, 2(CH_3)_3CSi); -4.4, -5.0(2q, {}^1J(C,H) = 118, 2(CH_3)_2Si)$ . MS (70 eV): 315 (14,  $M^{++} - 57), 299(7), 231(17), 199$ (7), 185 (5), 183 (7), 171 (12), 147 (23), 133 (8), 115 (9), 81 (21), 75 (17), 74 (8), 73 (100). Anal. calc. for C<sub>18</sub>H<sub>36</sub>O<sub>4</sub>Si<sub>2</sub> (372.65): C 58.02, H 9.74; found: C 58.04, H 9.75.

 $(-)-(4R,5S,6R)-4,5-Bis \{ f(tert-butyl) dimethylsilyl ] oxy \}$ -6-hydroxycyclohex-2-en-1-one ((-)-12). A soln. of TfOSiMe<sub>3</sub> (2.6 ml, 14.3 mmol) in PhH (15 ml) was added dropwise to a stirred soln. of (+)-10 (2.6 g, 7 mmol) and Et<sub>3</sub>N (2.3 ml, 16.5 mmol) in PhH (20 ml). After 2 h at 25°, the mixture was poured in Et<sub>2</sub>O (250 ml) and washed successively with H<sub>2</sub>O (40 ml), 1N HCl (20 ml), sat. aq. NaHCO<sub>3</sub> soln. (20 ml), and sat. aq. NaCl soln. (15 ml). After solvent evaporation, the crude oil obtained was dissolved in MeOH/H2O 10:1 (30 ml) and HF (40% aq. soln.; 0.6 ml, 13 mmol) was added. After stirring at 25° for 90 min, the mixture was poured into Et<sub>2</sub>O (250 ml) and washed successively with sat. aq. NaHCO3 soln. (20 ml) and sat. aq. NaCl soln. (15 ml). After drying (MgSO4), solvent evaporation, and column chromatography on silica gel (Lobar, Et<sub>2</sub>O/petroleum ether 1:6), a slowly crystallizing oil (2.28 g, 87%) was obtained. This white solid (m.p.  $51-54^{\circ}$ ) was recrystallized from MeOH/H<sub>2</sub>O to give an anal. sample. M. p.  $54-56^{\circ}$  ((±)-12 obtained from (±)-10, m.p.  $46-48^{\circ}$ ).  $[\alpha]_{559}^{25} = -157, [\alpha]_{578}^{25} = -165, [\alpha]_{546}^{25} = -193,$  $[\alpha]_{436}^{25} = -388, [\alpha]_{365}^{25} = -855 (c = 4, CHCl_3).$  IR (KBr): 3500, 2960, 2930, 2900, 1695, 1470, 1380, 1250, 1165, 1075, 940, 865, 835, 775. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 6.66 (*ddd*,  ${}^{3}J = 10,5, 2, {}^{4}J = 2.5, H-C(3)$ ); 6.09 (*dd*,  ${}^{3}J = 10.5, 2, {}^{4}J = 2.5, H-C(3)$ ); 6.09 (*dd*,  ${}^{3}J = 10.5, {}^{4}J = 10,5, {}^{4}J = 2.5, {}^{4}$  ${}^{4}J = 2.7, H-C(2); 4.65 (ddd, {}^{3}J = 2.5, 2, {}^{4}J = 2.7, H-C(4); 4.42 (ddd, {}^{3}J = 2.5, 1.8, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.5, {}^{4}J = 2.5, H-C(5)); 4.17 (d, {}^{4}J = 2.$  ${}^{3}J = 1.8$ , H–C(6)); 3.5 (br. s, OH); 0.96, 0.81 (2s, 2 t-BuSi); 0.16, 0.06 (2s, 2 Me<sub>2</sub>Si).  ${}^{13}$ C-NMR (62.9 MHz, CDCl<sub>3</sub>):  $198.3 (s, C(1)); 151.7 (dt, {}^{1}J(C,H) = 164, {}^{n}J(C,H) = 6, C(3)); 125.6 (dd, {}^{1}J(C,H) = 165, {}^{n}J(C,H) = 4, C(2)); 79.2 (dd, {}^{1}J(C,H) = 165, {}^{n}J(C,H) = 4, C(2)); 79.2 (dd, {}^{1}J(C,H) = 165, {}^{n}J(C,H) = 165, {}^{n}J(C,$  ${}^{1}J(C,H) = 150$ ; 76.7 (*dt*,  ${}^{1}J(C,H) = 139$ ,  ${}^{n}J(C,H) = 5$ ); 71.3 (*ddd*,  ${}^{1}J(C,H) = 135$ ,  ${}^{n}J(C,H) = 10$ , 4); 26.0, 25.7  $(2qm, {}^{1}J(C,H) = 122, 2 (CH_{3})_{3}CSi); 18.4, 18.3 (2s, 2 (CH_{3})_{3}CSi); -4.4, -4.5, -4.6, -4.9 (4q, {}^{1}J(C,H) = 120, 2)$ (CH<sub>3</sub>)<sub>2</sub>Si). MS (70 eV): 372 (1, *M*<sup>+</sup>), 357 (1), 316 (9), 315 (34), 299 (10), 287 (4), 227 (4), 225 (6), 199 (6), 198 (35), 183 (58), 155 (32), 147 (28), 73 (100). Anal. calc. for  $C_{18}H_{36}O_4Si_2$  (372.65): C 58.02, H 9.74; found: C 57.99, H 9.78.

(4 RS, 5 RS, 6 RS) - 4,5 - (Isopropylidenedioxy) - 6 - f(trimethylsilyl) oxy]cyclohex-2-en-1-one((±)-14). To a stirredsoln. of (±)-13 [28a] (7.36 g, 40 mmol) and Et<sub>3</sub>N (12.4 ml, 9 g, 88 mmol) in anh. PhH (100 ml) at 0°, a soln. of TfOSiMe<sub>3</sub> (14.5 ml, 17.8 g, 80 mmol) in anh. PhH (80 ml) was added dropwise within ca. 15 min. After stirring at  $0^{\circ}$  for 135 min, the mixture was poured portionwise into a vigourously stirred mixture of sat. aq. NaHCO<sub>3</sub> soln. (100 ml), sat. aq. NaCl soln. (50 ml), ice (200 g), and CH<sub>2</sub>Cl<sub>2</sub> (200 ml). The aq. layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 ml, twice). The org. phases were dried (MgSO<sub>4</sub>) and evaporated giving  $(\pm)-13/(\pm)-14/(\pm)-15$  1:1.4:1 (<sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>)). Chromatography on a column of silica gel at  $-20^{\circ}$  (AcOEt/CHCl<sub>3</sub> 1:9) afforded first 2.8 g (21%) of impure ( $\pm$ )-15, then 3.9 g of crude ( $\pm$ )-14, and finally 2.2 g (30%) of ( $\pm$ )-13. The 2nd fraction was recrystallized from hexane yielding 3.65 g (36%) of  $(\pm)$ -14 as white crystals. M.p. 115–117°. UV (dioxane): 331 (34), 214 (7100). IR (CCl<sub>4</sub>): 3000, 2960, 2940, 2900, 1717, 1385, 1375, 1250, 1170, 1095, 1050. <sup>1</sup>H-NMR (360 MHz,  $CDCl_3$ ): 6.59 (dt,  ${}^{3}J = 10, 2, {}^{4}J = 2, H-C(3)$ ); 6.05 (dd,  ${}^{3}J = 10, {}^{4}J = 1, H-C(2)$ ); 4.95-4.65 (m, H-C(4), H-C(5); 4.48 (d,  ${}^{3}J = 3$ , H-C(6)); 1.40, 1.35 (2s, Me<sub>2</sub>C); 0.20 (s, Me<sub>3</sub>Si).  ${}^{13}C$ -NMR (15.08 MHz, CDCl<sub>3</sub>): 194.8 (s, 2000) (s, C(1)); 143.7 (d, <sup>1</sup>J(C,H) = 166, C(3)); 127.1 (d, <sup>1</sup>J(C,H) = 168, C(2)); 111.3 (s, Me<sub>2</sub>C); 79.4 (d, <sup>1</sup>J(C,H) = 154); 73.8, 73.3 (2d,  ${}^{1}J(C,H) = 140$ ); 27.5, 26.6 (2q,  ${}^{1}J(C,H) = 126$ , (CH<sub>3</sub>)<sub>2</sub>C); 0.2 (q,  ${}^{1}J(C,H) = 120$ , (CH<sub>3</sub>)<sub>3</sub>Si). CI-MS  $(CH_4): 257 (5, [M + 1]^+), 242 (10, [M - 14]^+).$  Anal. calc. for  $C_{12}H_{20}O_4Si (256.37): C 56.22, H 7.86;$  found: C 56.34, H 7.79.

(5 RS, 6 SR, -1, 6-(Isopropylidenedioxy)-4, 5-bis[(trimethylsilyl)oxy]cyclohexa-1, 3-diene ((±)-15). A soln. of TfOSiMe<sub>3</sub> (3.6 ml, 20 mmol) and Et<sub>3</sub>N (3.1 ml, 22 mmol) in anh. PhH (20 ml) was added dropwise to a stirred soln. of (±)-13 [28a] (921 mg, 5 mmol) and 1,4-diazabicyclo[2.2.2]octane (5.6 g, 50 mmol) in anh. PhH (30 ml). After heating to 80° for 24 h, the mixture was poured into a vigourously stirred mixture of sat. aq. NaHCO<sub>3</sub> soln. (50 ml), ice (100 g), and CH<sub>2</sub>Cl<sub>2</sub> (100 ml). The aq. layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 ml, twice). The org. extracts were combined, washed with sat. aq. NaCl soln. (50 ml, 3 times), and dried (MgSO<sub>4</sub>). After solvent evaporation, the residue was purified by column chromatography on silica gel (AcOEt/hexane 1:9), yielding 1.33 g (81%) of a colourless oil, b.p. 120°/10<sup>-2</sup> Torr. This unstable product was contaminated with aromatic impurities. IR (film): 3000, 2970, 2910, 1685, 1610, 1500, 1470, 1380, 1250, 1045, 925, 910, 840. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 5.55 (*d*. <sup>3</sup>J = 10, 5.33 (*dd*. <sup>3</sup>J = 10, <sup>4</sup>J = 3, H-C(2), H-C(3)); 4.63 (*dd*. <sup>3</sup>J = 10, <sup>4</sup>J = 3), 4.34 (*d*. <sup>3</sup>J = 10, H-C(5), H-C(6)); 1.21, 1.18 (2s, Me<sub>2</sub>C); 0.2 (s, 2 Me<sub>3</sub>Si).

(4 RS, 5 SR, 6 RS)-6-Hydroxy-4,5-(isopropylidenedioxy)cyclohex-2-en-1-one (( $\pm$ )-16). One drop of 1N HCl was added to a soln. of ( $\pm$ )-14 (1.28 g, 5 mmol) in MeOH (50 ml). After 5 min at 20°, the mixture was poured into a vigourously stirred mixture of H<sub>2</sub>O (100 ml), sat. aq. NaHCO<sub>3</sub> soln. (1 ml), and CH<sub>2</sub>Cl<sub>2</sub> (100 ml). The org. phase was washed with sat. aq. NaCl soln. (50 ml, twice) and dried (MgSO<sub>4</sub>). After solvent evaporation, the residue was recrystallized from hexane/AcOEt yielding 0.65 g (71%) of colourless crystals. M.p. 152–153°. UV (dioxane): 322 (40), 214 (7500). UV (95% aq. EtOH): 321 (38), 211 (9800). IR (CHCl<sub>3</sub>): 3520, 3035, 3000, 2945, 2910, 1705, 1620, 1455, 1410, 1385, 1375, 1240, 1160, 1140, 1125, 1085, 1045, 990. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 6.68 (dt, <sup>3</sup>J = 10, 2, <sup>4</sup>J = 2, H-C(3)); 6.16 (dd, <sup>3</sup>J = 10, <sup>4</sup>J = 1, H-C(2)); 5.0–4.8 (m, 2 H); 4.44 (t, <sup>3</sup>J = 2, H-C(4), H-C(5), OH); 3.68 (dt, <sup>3</sup>J = 2, H-C(6)); 1.38, 1.33 (2s, Me<sub>2</sub>C). <sup>13</sup>C-NMR (15.08 MHz, CDCl<sub>3</sub>): 196.4 (s, C(1)); 145.9 (dt), <sup>1</sup>J(C,H) = 166, C(3)); 125.8 (dt, <sup>1</sup>J(C,H) = 128, C(2)); 111.5 (s, Me<sub>2</sub>C); 77.6 (dt, <sup>1</sup>J(C,H) = 156); 72.5, 72.4 (2dt).

 ${}^{1}J(C,H) = 148$ ; 27.4, 26.6 (2q,  ${}^{1}J(C,H) = 127$ , (CH<sub>3</sub>)<sub>2</sub>C). MS (70 eV): 169 (76,  $M^{+-} - 15$ ), 109 (58), 97 (100). Anal. calc. for C<sub>9</sub>H<sub>12</sub>O<sub>4</sub> (184.19): C 58.69, H 6.52; found: C 58.79, H 6.58.

1,2-O-(*Isopropylidene*)*cyclohex-5-ene-1,2,3,4*/0-*tetrol* (= ( $\pm$ )-1,2-O-(*Isopropylidene*)*conduritol* D; ( $\pm$ )-17). NaBH<sub>4</sub> (98 mg, 2.6 mmol) was added portionwise to a stirred soln. of ( $\pm$ )-16 (323 mg, 1.73 mmol) in 0.4M methanolic CeCl<sub>3</sub>· 7 H<sub>2</sub>O (5 ml, 2 mmol) at 0°. After 10 min at 0°, H<sub>2</sub>O (15 ml) was added and the mixture extracted with AcOEt (100 ml, 3 times). The combined org. phases were washed with sat. aq. NaCl soln. (15 ml), dried (MgSO<sub>4</sub>), and evaporated. The residue was filtered through a short column of silica gel (AcOEt/acctone 9:1) and recrystallized from Et<sub>2</sub>O/hexane, yielding 239 mg (73%) of colourless crystals. M.p. 86–87°. IR (CHCl<sub>3</sub>): 3570, 3040, 3000, 2940, 1385, 1230, 1085, 1035. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 5.95 (br. *ddd.* <sup>3</sup>J = 9.6, 4.5, <sup>4</sup>J = 1, H-C(5)); 5.74 (*ddt.*<sup>3</sup>J = 9.6, 2.7, <sup>4</sup>J = <sup>5</sup>J = 1, H-C(6)); 4.4-4.65 (*m*, H-C(1), H-C(2)); 4.08 (*dddt.*<sup>3</sup>J = 10.8, 4.5, 3.6, <sup>4</sup>J = <sup>5</sup>J = 1, H-C(4)); 3.80 (*dddd.*<sup>3</sup>J = 8.1, 3.6, 2., <sup>5</sup>J = 1, H-C(3)); 3.37 (*d.*<sup>3</sup>J = 8.1, OH-C(3)); 2.84 (*d.*<sup>3</sup>J = 10.8, OH-C(4)); 1.43, 1.34 (2s, Me<sub>2</sub>C). <sup>13</sup>C-NMR (15.08 MHz, CDCl<sub>3</sub>): 129.1, 127.5 (2*d.*<sup>1</sup>J(C,H) = 164); 110.5 (*s.*), 76.7 (*d.*<sup>1</sup>J(C,H) = 148); 72.8 (*d.*<sup>1</sup>J(C,H) = 152); 66.8, 66.4 (2*d.*<sup>1</sup>J(C,H) = 144); 27.6, 25.9 (2*q.* <sup>1</sup>J(C,H) = 126). CI-MS (CH<sub>4</sub>): 187 (5, (M + 1]<sup>+</sup>), 171 (11, [M - 15]<sup>+</sup>), 111 (100). Anal. calc. for C<sub>9</sub>H<sub>14</sub>O<sub>4</sub> (186.21): C 58.05, H 7.58; found: C 58.08, H 7.55.

*Cyclohex-5-ene-1,2,3,4/0-tetrol* (= *Conduritol D*; 4). A soln. of ( $\pm$ )-17 (186 mg, 1 mmol) in MeOH (3 ml) was added to 2N aq. HCl (3 ml). After stirring at 20° for 2 days, AcOEt (50 ml) was added and the mixture evaporated; this addition/evaporation was repeated twice, yielding 146 mg (100%) of 4 as a colourless oil. IR (film): 3340, 2900, 1635, 1560, 1400, 1250, 1155, 1095, 1045, 1015, 930, 905. <sup>1</sup>H-NMR (360 MHz, CD<sub>3</sub>COCD<sub>3</sub>): 5.87 (*s*, H–C(5), H–C(6)); 4.7, 4.3 (2*m*, 4 OH); 4.22 (br. *s*, H–C(1), H–C(4)); 3.94 (br. *s*, H–C(2), H–C(3)). Anal. calc. for C<sub>6</sub>H<sub>10</sub>O<sub>4</sub> (146.14): C 49.31, H 6.90; found: C 49.46, H 7.03.

*Tetra*-O-*acetylcyclohex-5-ene-1,2,3,4/0-tetrol* (= *Tetraacetylconduritol D*; **28**). A mixture of conduritol D (**4**; 146 mg, 1 mmol), pyridine (0.32 ml, 4 mmol), and Ac<sub>2</sub>O (4 ml, 42 mmol) was allowed to stand at 20° for 2 h. After solvent evaporation, toluene (20 ml) was added and the mixture evaporated to dryness. This operation was repeated 3 times. The residue was filtered through a short column of silica gel (AcOEt/hexane 1:1) and recrystallized from Et<sub>2</sub>O/hexane, yielding 298 mg (95%) of colourless crystals. M.p. 103–105° ([3]: 102–104°). IR (KBr): 2960, 1755, 1370, 1235, 1215, 1080. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 5.91 (br. *s*, H–C(5), H–C(6)); 5.56 (br. *d*, <sup>3</sup>*J* = 4, H–C(1), H–C(4)); 5.39 (br. *d*, <sup>3</sup>*J* = 4, H–C(2), H–C(3)); 2.05 (*s*, 4 AcO). Anal. calc. for C<sub>14</sub>H<sub>18</sub>O<sub>8</sub> (314.29): C 53.50, H 5.77; found: C 53.58, H 5.79.

*1,2-Bis*-O-[(tert-butyl)dimethylsilyl]-3-O-(trimethylsilyl)cyclohex-5-ene-1,2,3,4/0-tetrol (( $\pm$ )-18). DIBAH (1.2m soln. in toluene; 1.7 ml, 2 mmol) was added dropwise to a stirred soln. of ( $\pm$ )-11 (prepared from ( $\pm$ )-10; 445 mg, 1 mmol) in anh. toluene (40 ml) cooled to  $-90^{\circ}$ . After stirring at  $-80^{\circ}$  for 6 h, MeOH (1 ml) was added dropwise and the mixture poured into a vigourously stirred mixture of CH<sub>2</sub>Cl<sub>2</sub> (100 ml) and 10% aq. NH<sub>4</sub>Cl soln. (100 ml) at 0°. The aq. phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 ml, twice). The org. extracts were combined, washed with sat. aq. NaCl soln. (100 ml, 3 times), and dried (MgSO<sub>4</sub>). After solvent evaporation, the residue was filtered through a short column of silica gel (Et<sub>2</sub>O/hexane 1:2) yielding 433 mg (97%) of a colourless oil. IR (film): 3550, 3050, 2965, 2940, 2910, 2870, 1710, 1465, 1410, 1390, 1360, 1250, 1180, 1085, 1045, 1045, 1045, 1045, 1045, 1046, 1306, 1250, 1180, 1085, 1045, 1005. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 5.93 (*dm*, <sup>3</sup>J = 5, H-C(5)); 5.53 (br. *d*, <sup>3</sup>J = 5.2, OH-C(4)); 0.94, 0.90 (2*s*, 2 *t*-BuSi); 0.18, 0.15, 0.11 (3*s*, 2 Me<sub>2</sub>Si, Me<sub>3</sub>Si). MS (70 eV): 429 (5,  $M^+ - 17$ ), 389 (14), 388 (15), 387 (35), 309 (18), 307 (13), 299 (24), 257 (13), 167 (13), 147 (40), 133 (10), 81 (10), 75 (100). Anal. calc. for C<sub>21</sub>H<sub>46</sub>O<sub>4</sub>Si<sub>3</sub> (446.53): C 56.49, H 10.38; found: C 56.50; H 10.23.

(-)- $(1 R_5 R_6 S)$ -5,6-Bis {[ (tert-butyl) dimethylsilyl]oxy}-2-oxocyclohex-3-en-1-yl Acetate ((-)-19). At 0°, 4-(dimethylamino)pyridine (85 mg, 0.7 mmol) was added to a soln. of (-)-12 (1.96 g, 5.27 mmol) in Ac<sub>2</sub>O/pyridine 1:1 (10 ml). After stirring at 0° for 1 h, the mixture was poured in Et<sub>2</sub>O (250 ml) and washed successively with 3N HCl (40 ml), 10% aq. K<sub>2</sub>CO<sub>3</sub> soln. (80 ml), and sat. aq. NaCl soln. (50 ml). The aq. layers were extracted successively with Et<sub>2</sub>O (100 ml). The combined org. phases were dried (MgSO<sub>4</sub>) and evaporated. The solid obtained was recrystallized from MeOH/H<sub>2</sub>O to yield 1.8 g of white crystals, m.p. 104–106.5°. An other recrystallization (MeOH/H<sub>2</sub>O) gave 1.69 g (77.5%) of white crystals, m.p. 107.5–109°. The combined mother-liquors were purified by column chromatography on silica gel (*Lobar*, Et<sub>2</sub>O/petroleum ether 1:9) to give 380 mg (17.5%) of (-)-19 as white crystals, m.p. 105–107° (( $\pm$ )-19 obtained from ( $\pm$ )-12, m.p. 107–109°). [ $\alpha$ ]<sup>25</sup><sub>889</sub> = -150, [ $\alpha$ ]<sup>25</sup><sub>889</sub> = -157, [ $\alpha$ ]<sup>25</sup><sub>846</sub> = -183, [ $\alpha$ ]<sup>25</sup><sub>856</sub> = -364, [ $\alpha$ ]<sup>25</sup><sub>855</sub> = -840 (c = 2.5, CHCl<sub>3</sub>). IR (KBr): 2960, 2930, 2860, 1745, 1695, 1470, 1385, 1375, 1360, 1250, 1235, 1215, 1175, 1100, 1060, 1020, 950, 870, 775. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 6.61 (dt, <sup>3</sup>J = 10, 2, <sup>4</sup>J = 2, H-C(4)); 6.04 (dd, <sup>3</sup>J = 10, <sup>4</sup>J = 2.5, H-C(3)); 5.32 (d, <sup>3</sup>J = 1.7, H-C(1)); 4.72 (br. q, <sup>3</sup>J = 2.5, 2, <sup>4</sup>J = 2.5, H-C(5)); 4.38 (br. q, <sup>3</sup>J = 2.5, 1.7, <sup>4</sup>J = 2, H-C(6)); 2.22 (s, CH<sub>3</sub>O<sub>3</sub>); 0.95, 0.84 (2s, 2 t-BuSi); 0.17, 0.16, 0.08, 0.07 (4s, 2 Me<sub>2</sub>Si). <sup>13</sup>C-NMR (62.9 MHz, CDCl<sub>3</sub>): 191.5 (s, C(2)); 170 (s, COO); 149.8 (dt, <sup>1</sup>J(C,H) = 163, "J(C,H) = 6, C(4)); 127.1 (dd, <sup>1</sup>J(C,H) = 167, "J(C,H) = 4, C(3)); 77.15 (dm, <sup>1</sup>J(C,H) = 150); 77.05 (dm, <sup>1</sup>*J*(C,H) = 135); 71.3 (*ddd*, <sup>1</sup>*J*(C,H) = 140, <sup>*n*</sup>*J*(C,H) = 11, 4); 26.0, 25.6 (2*qm*, <sup>1</sup>*J*(C,H) = 125, 2 (*C*H<sub>3</sub>)<sub>3</sub>CSi); 20.7 (*q*, <sup>1</sup>*J*(C,H) = 130, *C*H<sub>3</sub>CO); 18.4, 18.3 (2*s*, 2 (*C*H<sub>3</sub>)<sub>3</sub>CSi); -4.35, -4.4, -4.75, -4.85 (4*q*, <sup>1</sup>*J*(C,H) = 119, 2 (*C*H<sub>3</sub>)<sub>2</sub>Si). MS (70 eV): 357 (4,  $M^{+}$  - 57), 315 (8), 225 (18), 198 (32), 183 (54), 155 (13), 147 (31), 133 (13), 117 (9), 81 (15), 75 (35), 73 (100). Anal. calc. for C<sub>20</sub>H<sub>38</sub>O<sub>5</sub>Si<sub>2</sub> (414.69): C 57.93, H 9.24; found: C 57.93, H 9.24.

(-)-1L-3-O-Acetyl-1,2-bis-O-[(tert-butyl)dimethylsilyl]cyclohex-5-ene-1,2,3,4/0-tetrol((-)-20).CeCl<sub>3</sub>·7H<sub>2</sub>O (1.87 g, 5 mmol) and (-)-19 (1.98 g, 4.77 mmol) were dissolved in MeOH (35 ml) at 40°. To this soln. cooled to 10°, NaBH<sub>4</sub> (300 mg, 7.8 mmol) was added portionwise within 15 min. The mixture was then stirred for 10 min at  $10^{\circ}$ , poured in H<sub>2</sub>O (85 ml) and extracted with Et<sub>2</sub>O (150 ml, 4 times). The combined org, phases were washed with sat. aq. NaCl soln. (30 ml), dried (MgSO<sub>4</sub>), and evaporated. Usually, the solid obtained was shown (<sup>1</sup>H-NMR) to be a ca.7:1 mixture of (-)-20 and (-)-19; as the separation turned out to be difficult, this solid was again reduced by NaBH<sub>4</sub> (200 mg, 5 mmol)/CeCl<sub>3</sub>·7H<sub>2</sub>O (1.87 g, 5 mmol) in MeOH (20 ml), according to the same procedure (vide supra). Then the solid obtained was recrystallized twice from MeOH/H<sub>2</sub>O to afford 1.39 g (70%) of (-)-20 as colourless crystals, m.p. 92-93°. The combined mother-liquors were evaporated and purified by column chromatography on silica gel (Lobar, Et<sub>2</sub>O/petroleum ether 1:5) to yield 430 mg (22%) of (-)-20 as white crystals, m.p. 90–92° ((±)-20 obtained from (±)-19, m.p. 87–89°). [ $\alpha$ ] $_{589}^{25} = -29$ , [ $\alpha$ ] $_{578}^{25} = -30$ , [ $\alpha$ ] $_{546}^{25} = -34.5$ , [ $\alpha$ ] $_{436}^{25} = -65$ ,  $[\alpha]_{365}^{25} = -113$  (c = 3, CHCl<sub>3</sub>). IR (KBr): 3520, 2960, 2930, 2900, 2860, 1720, 1460, 1420, 1390, 1360, 1245, 1100, 1085, 1050, 1035, 970, 890, 875, 835, 775. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 5.92 (ddd,  ${}^{3}J = 10.5, 4.5, {}^{4}J = 2.5,$ H-C(5); 5.57 (dt,  ${}^{3}J = 10.5$ , 1.8,  ${}^{4}J = 1.8$ , H-C(6)); 4.71 (dd,  ${}^{3}J = 6$ , 1.5, H-C(3)); 4.29 (ddd,  ${}^{3}J = 3.5$ , 1.8,  ${}^{4}J = 2.5, H-C(1); 4.17 (m, H-C(2), H-C(4)); 3.3 (m, OH); 2.17 (s, CH_{3}CO); 0.94, 0.92 (2s, 2t-BuSi); 0.16, 0.13, 0.14, 0.14)$ 0.12 (3s, 2 Me<sub>2</sub>Si). <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 170.5 (s, COO); 130.2 (dq, <sup>1</sup>J(C,H) = 161, <sup>n</sup>J(C,H) = 5), 128.0  $(dt, {}^{1}J(C,H) = 164, {}^{n}J(C,H) = 4)(C(5), C(6));$  74.1  $(d, {}^{1}J(C,H) = 148);$  71.1  $(dm, {}^{1}J(C,H) = 144);$  70.8 (ddd, J(C,H) = 144); 70.8 (ddd, J(C,H) = 14); 70.8 (ddd, J(C,H) = 14); 70.8 (ddd, J(C,H) = ${}^{1}J(C,H) = 138$ ,  ${}^{n}J(C,H) = 11$ , 4); 65.3 (dd,  ${}^{1}J(C,H) = 150$ ,  ${}^{n}J(C,H) = 9$ ); 26.2, 25.8 (2qm,  ${}^{1}J(C,H) = 126$ , 2  $(CH_3)_3CSi)$ ; 21.1 (q, <sup>1</sup>J(C,H) = 130, CH<sub>3</sub>CO); 18.5, 18.4 (2s, 2 (CH<sub>3</sub>)<sub>3</sub>CSi); -4.25, -4.3, -4.76, -4.85 (4q, -4.85)); -4.25, -4.3, -4.76 (42, -4.85)); -4.25, -4.3, -4.76 (42, -4.85)); -4.25, -4.3, -4.76 (44, -4.85)); -4.25, -4.3, -4.76 (44, -4.85)); -4.25, -4.3, -4.76 (44, -4.85)); -4.25, -4.3, -4.76 (44, -4.85)); -4.25, -4.25 (44, -4.85)); -4.25, -4.25 (44, -4.85)); -4.25, -4.25 (44, -4.85)); -4.25, -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4.85)); -4.25 (44, -4  ${}^{1}J(C,H) = 119, 2 (CH_3)_2Si). MS (70 eV): 359 (0.3, M^+ - 57), 327 (1), 300 (2), 299 (9), 225 (7), 209 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (27), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14), 200 (14),$ 167 (31), 149 (11), 147 (31), 133 (14), 117 (13), 111 (9), 75 (69), 73 (100). Anal. calc. for C<sub>20</sub>H<sub>40</sub>O<sub>5</sub>Si<sub>2</sub> (416.71): C 57.65, H 9.68; found: C 57.80, H 9.72.

(-)-11-3-O-Acetyl-4-O-benzoyl-1,2-bis-O-[(tert-butyl)dimethylsilyl]cyclohex-5-ene-1,2,3/4-tetrol ((-)-21).Diethyl azodicarboxylate (1.05 ml, 6.7 mmol) was added dropwise to a soln. of (-)-20 (1.58 g, 3.8 mmol), Ph<sub>3</sub>P (1.83 g, 7 mmol), and benzoic acid (0.86 g, 7 mmol) in THF (20 ml). After 1 h at 20-25° (occasional cooling with a cold-water bath was necessary), Ph<sub>2</sub>P (393 mg, 1.5 mmol), benzoic acid (183 mg, 1.5 mmol), and diethyl azodicarboxylate (0.22 ml, 1.4 mmol) were successively added. After 2 h at 20-25°, silica gel (10 g) was added, the mixture evaporated, and the resulting powder poured on the top of a small silica-gel column. Elution with Et<sub>2</sub>O/petroleum ether 1:5 gave, after evaporation, an oil which was purified by column chromatography on silica gel (Lobar, Et<sub>2</sub>O/petrolcum ether 1:30) to yield (-)-21 as a colourless oil (1.71 g, 87%; (±)-21 obtained from (±)-20, m.p.  $67-69^{\circ}$ ).  $[\alpha]_{589}^{25} = -177, \ [\alpha]_{578}^{25} = -185, \ [\alpha]_{546}^{25} = -212, \ [\alpha]_{436}^{25} = -378, \ [\alpha]_{365}^{25} = -633 \ (c = 6.5, \ \text{CHCl}_3)$ . IR (KBr): 3070, 2960, 2930, 2900, 2860, 1740, 1710, 1600, 1580, 1470, 1385, 1270, 1250, 1180, 1110, 1090, 1035, 1020, 995, 900, 870, 830, 775, 710. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 8.03 (br. d, <sup>3</sup>J = 8), 7.56 (br. t, <sup>3</sup>J = 8), 7.44 (br. t, <sup>3</sup>J = 8) (arom. CH); 5.93  $(dq, {}^{3}J = 8.5, {}^{3}J = {}^{4}J = {}^{5}J = 2, H-C(4));$  5.69  $(dt, {}^{3}J = 10.5, {}^{3}J = {}^{4}J = 2, H-C(5));$  5.62 (br. dtd,  ${}^{3}J = 10.5, 2, {}^{4}J = 2, 1.5, H-C(6)); 5.24 (dd, {}^{3}J = 8.5, 1.5, H-C(3)); 4.51 (dq, {}^{3}J = 3, {}^{3}J = {}^{4}J = {}^{5}J = 2, H-C(1));$  $4.21 (dt, {}^{3}J = 3, {}^{3}J = {}^{4}J = 1.5, H-C(2)); 2.04 (s, CH_{3}CO); 0.94, 0.93 (2s, 2t-BuSi); 0.13 (s, 6H); 0.11 (s, 3H); 0.10 (s, 2H); 0.10 (s, 2H); 0.11 (s, 2H); 0.11 (s, 2H); 0.10 (s, 2H); 0.11 (s,$ (s, 3 H, 2 Mc<sub>2</sub>Si). <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 169.5, 166.2 (2s, 2 COO); 133.1 (dm, <sup>1</sup>J(C,H) = 162), 132.3 (dm,  ${}^{1}J(C,H) = 165), 129.7, 128.4 (2dm, {}^{1}J(C,H) = 162), 124.3 (dm, {}^{1}J(C,H) = 165) (arom. C, C(5), C(6)); 74.3, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.2, 74.$ 72.1 (3*dm*,  ${}^{1}J(C,H) = 150$ ), 70.3 (*dm*,  ${}^{1}J(C,H) = 138$ , C(1), C(2), C(3), C(4)); 26.2, 25.8 (2*qm*,  ${}^{1}J(C,H) = 123$ , 2 (2*m*,  ${}^{1}J($  $(CH_3)_3CSi);$  21.1  $(q, {}^1J(C,H) = 130, CH_3CO);$  18.5, 18.3  $(2s, 2, (CH_3)_3CSi);$  -4.26, -4.30, -4.75, -4.81  $(4q, 1)_3CSi);$  -4.81 (4q ${}^{1}J(C,H) = 120, 2 (CH_{3})_{2}Si).$  MS (70 eV): 463 (1,  $M^{+} - 57), 299$  (4), 255 (11), 225 (7), 213 (12), 209 (10), 167 (14), 147 (9), 133 (5), 106 (8), 105 (100), 77 (14), 75 (13), 73 (35). Anal. calc. for C<sub>27</sub>H<sub>44</sub>O<sub>6</sub>Si<sub>2</sub> (520.81): C 62.27, H 8.52; found: C 62.35 H 8.43.

(-)-1L-Cyclohex-5-ene-1,2,3/4-tetrol (=(-)-Conduritol C; (-)-3). Bu<sub>4</sub>NF (1M soln. in THF; 8 ml, 8 mmol) was added to a soln. of (-)-21 (1.5 g, 2.9 mmol) in THF (40 ml) cooled to 0°. After stirring for 45 min at 0°, sat. aq. NaCl soln. (25 ml) was added and the mixture extracted with AcOEt (120 ml, 4 times). The org. extract was dried (MgSO<sub>4</sub>), evaporated, and filtered through a 25-cm column of silica gel (AcOEt/petroleum ether 3:2). After evaporation, the eluate (820 mg) was dissolved in McOH (20 ml), MeONa (30% soln. in MeOH; 0.3 ml, 1.6 mmol) added, and the mixture stirred for 15 min. Then, Amberlite IR-120 (H<sup>+</sup>-form, 1.2 g) was added. After stirring for 5 min, the mixture was filtered and the Amberlite resin extracted with MeOH (15 ml, twice). The combined filtrate was evaporated and dried at 50°/0.03 Torr and the sirup obtained dissolved in warm MeOH (4 ml). Addition of

Et<sub>2</sub>O (10 ml) caused the precipitation of colored impurities which were removed by filtration on *Celite*. The filtrate was left overnight at  $-35^{\circ}$  to yield 195 mg of crystals, m.p. 121–123°. Recrystallization from MeOH/Et<sub>2</sub>O gave 178 mg of white crystals, m.p. 129–130°. The combined mother-liquors were evaporated and the sirupy residue purified by 2 successive recrystallizations (MeOH/Et<sub>2</sub>O) yielding 80 mg of colourless crystals, m.p. 129.5–131° (total yield 61%). The *Celite* was extracted with hot MeOH (10 ml) and the filtrate combined with the mother liquors and evaporated. The sirupy residue obtained (150 mg, impure (–)-3) was acetylated yielding an additional 10% of the corresponding acetate (–)-22 (*vide infra*). Data of (–)-3: ((±-)-3 obtained from (±)-21, m.p. 146–148°; [23]: 151.5–152°; [24]: 148–149°). [ $\alpha$ ]<sub>589</sub><sup>25</sup> = -209, [ $\alpha$ ]<sub>578</sub><sup>25</sup> = -218, [ $\alpha$ ]<sub>546</sub><sup>25</sup> = -432, [ $\alpha$ ]<sub>545</sub><sup>25</sup> = -665 (*c* = 2, H<sub>2</sub>O). IR (KBr): 3400, 2900, 1400, 1050, 1020, 840. <sup>1</sup>H-NMR (360 MHz, CD<sub>3</sub>OD): 5.64 (*dt*, <sup>3</sup>J = 10.5, <sup>3</sup>J = <sup>4</sup>J = 2, H–C(5)); 5.55 (*dtd*, <sup>3</sup>J = 10, 5, 2, <sup>4</sup>J = 2, H–C(5)); 5.55 (*dtd*, <sup>3</sup>J = 8, 1.5, H–C(3)). <sup>13</sup>C-NMR (90.55 MHz, CD<sub>3</sub>OD): 130.8 (*dd*, <sup>1</sup>J(C,H) = 160, <sup>n</sup>J(C,H) = 5), 130.1 (*dm*, <sup>1</sup>J(C,H) = 162, C(5), C(6)); 76.2 (*dm*, <sup>1</sup>J(C,H) = 143); 73.9 (*dm*, <sup>1</sup>J(C,H) = 146); 70.7 (*dm*, <sup>1</sup>J(C,H) = 146); 69.5 (br. *dd*, <sup>1</sup>J(C,H) = 140, <sup>n</sup>J(C,H) = 10). MS (70 eV): 128 (0.3,

 $C_{6}H_{10}O_{4}$  (146.143): C 49.31, H 6.90; found: C 49.46, H 6.99. (-)-1L-1,2,3,4-Tetra-O-acetylcyclohex-5-ene-1,2,3/4-tetrol (= (-)-Tetraacetylconduritol C; (-)-22). A soln. of (-)-3 (150 mg; impure syrup, vide supra) in Ac<sub>2</sub>O (2 ml, 21 mmol) and pyridine (2 ml, 25 mmol) was left overnight and then poured in H<sub>2</sub>O (15 ml) and extracted with AcOEt (60 ml, twice). The extract was washed successively with 2N HCl (15 ml), 10% aq. K<sub>2</sub>CO<sub>3</sub> soln. (20 ml), and sat. aq. NaCl soln. (10 ml). The aq. layers were extracted successively with AcOEt (50 ml). The combined org. phases were dried (MgSO<sub>4</sub>), evaporated, and purified by column chromatography on silica gel (Lobar, AcOEt/petroleum ether 1:2), giving 94 mg of colourless crystals, m.p. 95–97°. Recrystallization from Et<sub>2</sub>O/petroleum ether gave 89 mg of crystals, m.p. 96–97.5° ((±)-22 obtained from (±)-3, m.p. 90–91°; [23]: 90–92°).  $[\alpha]_{256}^{25} = -186$ ,  $[\alpha]_{578}^{25} = -193$ ,  $[\alpha]_{246}^{25} = -221$ ,  $[\alpha]_{436}^{25} = -388$ ,  $[\alpha]_{365}^{25} = -635$  (c = 2, CHCl<sub>3</sub>). IR (KBr): 3020, 2980, 2940, 1750, 1430, 1150, 1090, 1050, 1020, 950, 930. <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>): 5.55–5.56 (m, 5 H); 5.20 (br. d, <sup>3</sup>J = 8); 2.13, 2.07, 2.02, 2.01 (4s, 4 CH<sub>3</sub>CO). Anal. calc. for C<sub>14</sub>H<sub>18</sub>O<sub>8</sub> (314.29): C 53.50, H 5.77; found: C 53.44, H 5.76.

 $M^{+}$  - 18), 111 (1), 110 (5), 99 (15), 94 (6), 87 (5), 86 (100), 82 (20), 81 (13), 57 (78), 55 (19), 53 (19). Anal. calc. for

(-)-1 L-Cyclohexane-1,2,3/4-tetrol ((-)-23). A mixture of (-)-3 (42 mg, 0.3 mmol) and 10% Pd/C (10 mg) in MeOH (4 ml) was pressurized (1 atm) with H<sub>2</sub>. After stirring at 25° for 2 h, H<sub>2</sub> was evacuated, replaced by N<sub>2</sub>, and the mixture filtered through *Celite*. The *Celite* was extracted with MeOH (5 ml, 3 times), the combined filtrate evaporated, and the white solid recrystallized from MeOH/Et<sub>2</sub>O yielding 38 mg (89%) of crystals. M.p. 157–158° ([32]: 158–159°).  $[\alpha]_{589}^{25} = -39$ ,  $[\alpha]_{578}^{25} = -40$ ,  $[\alpha]_{546}^{25} = -45$ ,  $[\alpha]_{436}^{25} = -73.5$ ,  $[\alpha]_{355}^{25} = -108$  (*c* = 1, H<sub>2</sub>O; [31]:  $[\alpha]_{589}^{20} = -35.8 \pm 2$  (*c* = 4.7, H<sub>2</sub>O); [32]:  $[\alpha]_{589}^{20} = +37.5 \pm 1.9$  (*c* = 1, H<sub>2</sub>O) for (+)-23). <sup>1</sup>H-NMR (360 MHz, CD<sub>3</sub>OD): 3.9 (td, <sup>3</sup>J = 3, 3, <sup>4</sup>J = 1, H-C(2)); 3.67 (ddd, <sup>3</sup>J = 10, 9, 4.5, H-C(4)); 3.58 (ddd, <sup>3</sup>J = 10, 4.5, 3, H-C(1)); 3.23 (dd, <sup>3</sup>J = 9, 3, H-C(3)); 1.83 (dq, <sup>2</sup>J = 13, <sup>3</sup>J = 4.5, H<sub>eq</sub>-C(5)); 1.70 (tdd, <sup>2</sup>J = 13, <sup>3</sup>J = 13, 10, 4.5, H<sub>ax</sub>-C(5)): Anal. calc. for C<sub>6</sub>H<sub>12</sub>O<sub>4</sub> (148.157): C 48.64, H 8.16; found: C 48.64, H 8.20.

(1 RS, 2 RS, 3 RS)-6-Oxocyclohex-4-ene-1,2,3-triyl Triacetate ((±)-26). A soln. of (±)-12 (373 mg, 1 mmol), and Bu<sub>4</sub>NF (1M soln. in THF, 2.2 ml, 2.2 mmol) in THF (5 ml) was stirred at 0° for 10 min. Pyridine (1.2 ml, 15 mmol) and Ac<sub>2</sub>O (1.4 ml, 15 mmol) were added. After stirring at 0° for 1 h, then at 20° overnight, the mixture was poured in ice-water (30 ml) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 ml, 3 times). The org. extract was washed successively with 2N HCl (10 ml), 10% aq. K<sub>2</sub>CO<sub>3</sub> soln. (15 ml), and sat. aq. NaCl soln. (15 ml). The aq. layers were extracted successively with CH<sub>2</sub>Cl<sub>2</sub> (70 ml). The combined org. phases were dried (MgSO<sub>4</sub>), evaporated, and purified by column chromatography on silica gel (AcOEt/hexane 1:1), yielding 235 mg (87%) of colourless crystals. M.p. 124–126°. IR (KBr): 3005, 2940, 1755, 1715, 1435, 1375, 1225, 1160, 1115, 1090, 1040, 1025, 960. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 6.65 (dt, <sup>3</sup>J = 10.5, 2, <sup>4</sup>J = 2, H-C(4)); 6.23 (dd, <sup>3</sup>J = 10.5, <sup>4</sup>J = 2.5, H-C(5)); 5.90 (m, H-C(2), H-C(3)); 5.61 (d, <sup>3</sup>J = 2.5, H-C(1)); 2.17 (s, AcO); 2.07 (s, 2 AcO). <sup>13</sup>C-NMR (15.08 MHz, CDCl<sub>3</sub>): 189.8 (s, C(6)); 170.0, 169.4, (3s, 3 COO); 144.2 (d, <sup>1</sup>J(C,H) = 168, C(4)); 128.8 (d, <sup>1</sup>J(C,H) = 172, C(5)); 72.4, 72.3 (2d, <sup>1</sup>J(C,H) = 150); 68.0 (d, <sup>1</sup>J(C,H) = 148); 20.3, 20.2, 20.1 (3q, <sup>1</sup>J(C,H) = 130, CH<sub>3</sub>CO). MS (70 eV): 270 (6, M<sup>+</sup>), 228 (4), 210 (3), 168 (25), 145 (7), 139 (22), 127 (9), 126 (100), 125 (15), 109 (7). Anal. calc. for C<sub>12</sub>H<sub>14</sub>O<sub>7</sub> (270.24): C 53.34, H 5.22; found: C 53.43, H 5.18.

Reduction of  $(\pm)$ -26 by NaBH<sub>4</sub>/CeCl<sub>3</sub>. NaBH<sub>4</sub> (115 mg, 3 mmol) was added portionwise within 10 min to a stirred soln. of  $(\pm)$ -26 (338 mg, 1.25 mmol) in 0.4M methanolic CeCl<sub>3</sub> · 7H<sub>2</sub>O (5 ml, 2 mmol) at 0°. After 15 min at 0°, the mixture was poured in ice-water (10 ml) and extracted with AcOEt (60 ml, 3 times). The combined org. phases were washed with sat. aq. NaCl soln. (15 ml), evaporated, and vacuum-dried (25°/0.1 Torr). The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) and the soln. dried (MgSO<sub>4</sub>); then pyridine (1 ml, 12 mmol) and Ac<sub>2</sub>O (1 ml, 11 mmol) were added. After 2 h at 20°, the mixture was poured in ice-water (20 ml) and extracted with AcOEt (70 ml, 3 times).

The org. extract was washed successively with 2N HCl (10 ml), 10% aq.  $K_2CO_3$  soln. (15 ml), and sat. aq. NaCl soln. (15 ml). The aq. layers were extracted successively with AcOEt (70 ml). The combined org. phase was dried (MgSO<sub>4</sub>) and evaporated and the residue purified by column chromatography on silica gel (AcOEt/hexane 1:1). A first fraction yielded 201 mg (51%) of *tetraacetylconduritol D* (28) as white crystals, m.p. 103–105°. The second fraction yielded 138 mg (35%) of  $(\pm)$ -tetraacetylconduritol C (( $\pm$ )-22) as white crystals, m.p. 90–91°.

## REFERENCES

- [1] A. Warm, P. Vogel, J. Org. Chem. 1986, 51, 5348.
- [2] F. Gasparini, P. Vogel, Helv. Chim. Acta 1989, 72, 271.
- [3] Th. Posternak, 'Les Cyclitols, Chimie, Biochimie, Biologie', Hermann, Paris, 1962.
- [4] K. Kubler, Arch. Pharm. 1908, 246, 620.
- [5] V. Plouvier, C. R. Hebd. Séances Acad. Sci. 1962, 255, 360.
- [6] H. Kindl, O. Hoffmann-Ostenhof, Phytochemistry 1966, 5, 1091; ibid. 1967, 6, 77; Fortschr. Chem. Org. Naturst. 1966, 24, 149; Monatsh. Chem. 1970, 101, 1704; H. Kindl, Ann. N. Y. Acad. Sci. 1969, 165, 615.
- [7] H. Kindl, O. Hoffmann-Ostenhof, Monatsh. Chem. 1966, 97, 1771; ibid. 1966, 97, 1778; H. Kindl, G.J. Kremlicka, O. Hoffmann-Ostenhof, ibid. 1966, 97, 1784.
- [8] S. Knapp, R. M. Ornaf, K. E. Rodriques, J. Am. Chem. Soc. 1983, 105, 5494.
- [9] T.L. Nagabushan, Can. J. Chem. 1970, 48, 383.
- [10] K.J. Lee, S.A. Boyd, N.S.Radin, Carbohydr. Res. 1985, 144, 148; see also: N. Akbulut, M. Balci, J. Org. Chem. 1988, 53, 3338.
- [11] Y. Watanabe, M. Mitani, S. Ozaki, Chem. Lett. 1987, 123.
- [12] S.V. Ley, F. Sternfeld, S. Taylor, Tetrahedron Lett. 1987, 28, 225.
- [13] M. Nakajima, A. Hasegawa, N. Kurihara, Chem. Ber. 1962, 95, 2708.
- [14] S.J. Angyal, P.T. Gilham, J. Chem. Soc. 1958, 375.
- [15] H. Paulsen, W. Röben, F. R. Heiker, Chem. Ber. 1981, 114, 3242; see also: H. Paulsen, F. R. Heiker, Liebigs Ann. Chem. 1981, 2180; G. Vass; P. Krausz, B. Quiclet-Sire, J. M. Delaumeny, J. Cleophax, S. D. Gero, C. R. Hebd. Séances Acad. Sci., Ser. II 1985, 301, 1345.
- [16] Th. Posternak, D. Reymond, Helv. Chim. Acta 1955, 38, 195.
- [17] J. Applequist, J. Am. Chem. Soc. 1973, 95, 8258; M. Chastrette, J.C. Martin, Can. J. Chem. 1981, 59, 907.
- [18] G. Legler, Hoppe Seyler's Z. Physiol. Chem. 1966, 345, 197; ibid. 1968, 349, 767; G. Legler, E. Bause, Carbohydr. Res. 1973, 28, 45; G. Legler Meth. Enzymol. 1977, 46, 368, and ref. cit. therein; G. Legler, M. Herrchen, FEBS Lett. 1981, 135, 139; N.S. Radin, R.R. Vunnam, Meth. Enzymol. 1981, 72, 673; K.T. Cavanagh, R.A. Fisher, G. Legler, M. Herrchen, M.Z. Jones, E. Julich, R.P. Sewell-Alger, M.L. Sinnott, F.E. Wilkinson, Enzyme 1985, 34, 75.
- [19] G. Legler, W. Loth, Hoppe-Seyler's Z. Physiol. Chem. 1973, 354, 243.
- [20] R.A. Aleksejczyk, G.A. Berchtold, A.G. Braun, J. Am. Chem. Soc. 1985, 107, 2554.
- [21] Y. Kameda, N. Asano, M. Yoshikawa, K. Matsui, J. Antibiot. 1980, 33, 1575; E. Truscheit, W. Frommer, B. Junge, L. Müller, D. D. Schmidt, W. Wingender, Angew. Chem. Int. Ed. 1981, 20, 744.
- [22] C. Ziegler, G. Mersmann, Biochim. Biophys. Acta 1984, 799, 203.
- [23] G.E. McCasland, J.M. Reeves, J. Am. Chem. Soc. 1955, 77, 1812.
- [24] M. Nakajima, I. Tomida, S. Takei, Chem. Ber. 1957, 90, 246; ibid. 1959, 92, 163.
- [25] K.A. Black, P. Vogel, Helv. Chim. Acta 1984, 67, 1612; A. Warm, P. Vogel, ibid. 1987, 70, 690.
- [26] E.J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190.
- [27] F. Brion, Tetrahedron Lett. 1982, 23, 5299; L.A. Van Royen, R. Mijngheer, P.J. De Clerq, *ibid.* 1983, 24, 3145; M. M. Campbell, A. D. Kaye, M. Sainsbury, *ibid.* 1983, 24, 4745; B. A. Keay, R. Rodrigo, Can. J. Chem. 1983, 61, 637; M. M. Campbell, A. D. Kaye, M. Sainsbury, R. Yavarzadeh, Tetrahedron 1984, 40, 2461; see also: M.E. Jung, L.J. Street, Tetrahedron Lett. 1985, 26, 3639.
- [28] a) E. Vieira, P. Vogel, Helv. Chim. Acta 1982, 65, 1700; b) J. Wagner, E. Vieira, P. Vogel, ibid. 1988, 71, 624.
- [29] J.L. Luche, J. Am. Chem. Soc. 1978, 100, 2226.
- [30] O. Mitsunobu, Synthesis 1981, 1, and ref. cit. therein.
- [31] Th. Posternak, H. Friedli, Helv. Chim. Acta 1953, 36, 251.
- [32] P. Barbezat, D. Reymond, Th. Posternak, Helv. Chim. Acta 1967, 50, 1811.

- [33] G. Grynkiewicz, H. Burzynska, Tetrahedron 1976, 32, 2109.
- [34] S. Mirza, L.-P. Molleyres, A. Vasella, Helv. Chim. Acta 1985, 68, 988.
- [35] T. Takeuchi, H. Chimura, M. Hamada, U. Umezawa, O. Yoshioka, N. Oguchi, Y. Takahashi, A. Matsuda, J. Antibiot. 1975, 28, 737; H. Chimura, H. Nakamura, T. Takita, T. Takeuchi, H. Umezawa, K. Kato, S. Saito, T. Tomizawa, Y. Iitaka, *ibid.* 1975, 28, 743.
- [36] Y. Sugimoto, H. Suzuki, H. Yamaki, T. Nishimura, N. Tananka, J. Antibiot. 1982, 35, 1222; K.T. Douglas, S. Shinkai, Angew. Chem. Int. Ed. 1985, 24, 31.
- [37] E. Vieira, Thèse de doctorat, Université de Lausanne, Dec. 1986; E. Vieira, P. Vogel, 19th ACS National Meeting, New York City, New York, April 13–18, 1986, Division of Organic Chemistry, Communication ORGN No. 14.
- [38] K. Ueda, K. Yasutomi, I. Mori, Chem. Lett. 1983, 149.